
Lecture 21

Cavity Resonators

Cavity resonators are important components of microwave and optical systems. They work
by constructive and destructive interference of bouncing waves in an enclosed region. They
can be used as filters, or as devices to enhance certain physical interactions. These can be
radiation antennas or electromagnetic sources such as magnetrons or lasers. They can also
be used to make high sensitivity sensors. We will study a number of them, and some of them,
only heuristically in this lecture.

21.1 Transmission Line Model of a Resonator

The simplest cavity resonator is formed by using a transmission line. The source end can be
terminated by ZS and the load end can be terminated by ZL. When ZS and ZL are non-
dissipative, such as when they are reactive loads (capacitive or inductive), then no energy is
dissipitated as a wave is totally reflected off them. Therefore, if the wave can bounce and
interfere constructively between the two ends, a coherent solution or a resonant solution can
exist due to constructive inference.

The resonant solution exists even when the source is turned off. In mathematical par-
lance, this is a homogeneous solution to a partial differential equation or ordinary differential
equation, since the right-hand side of the pertinent equation is zero. The right-hand side of
these equations usually corresponds to a source term or a driving term. In physics parlance,
this is a natural solution since it exists naturally without the need for a driving or exciting
source.
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226 Electromagnetic Field Theory

Figure 21.1: A simple resonator is made by terminating a transmission line with two
reactive loads at its two ends, the source end with ZS and the load end with ZL.

The transverse resonance condition for 1D problem can be used to derive the resonance
condition, namely that

1 = ΓSΓLe
−2jβzd (21.1.1)

where ΓS and ΓL are the reflection coefficients at the source and the load ends, respectively,
βz the the wave number of the wave traveling in the z direction, and d is the length of the
transmission line.

For a TEM mode in the transmission line, as in a coax filled with homogeneous medium,
then βz = β, where β is the wavenumber for the homogeneous medium. Otherwise, for a
quasi-TEM mode, βz = βe where βe is some effective wavenumber for a z-propagating wave
in a mixed medium. In general,

βe = ω/ve (21.1.2)

where ve is the effective phase velocity of the wave in the heterogeneous structure like a
microstrip line.

When the source and load impedances are replaced by short or open circuits, then the
reflection coefficients are −1 for a short, and +1 for an open circuit. The (21.1.1) above then
becomes

±1 = e−2jβed (21.1.3)

The ± sign corresponds to different combinations of open and short circuits at the two ends
of the transmission lines. When a “+” sign is chosen, which corresponds to either both ends
are short circuit, or are open circuit, the resonance condition is such that

βed = pπ, p = 0, 1, 2, . . . , or integer (21.1.4)

For a TEM or a quasi-TEM mode in a transmission line, p = 0 is not allowed as the voltage
is constant, and it will be uniformly zero on the transmission line. (If only V (z) = 0 at one
end, it will be zero for all z implying a trivial solution.) The lowest mode then is when p = 1
corresponding to a half wavelength on the transmission line.
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When the line is open at one end, and shorted at the other end in (21.1.1), the resonance
condition corresponds to the “−” sign in (21.1.3), which gives rise to

e−2jβed = e−jpπ = −1, p odd integer (21.1.5)

The above implies that

βed = pπ/2, p odd integer (21.1.6)

The lowest mode is when p = 1 corresponding to a quarter wavelength on the transmission
line, which is smaller than that of a half-wavelength transmission line terminated with short or
open at both ends. Designing a small resonator using a quarter-wave resonator is a prerogative
in modern day electronic design. For example, miniaturization in cell phones calls for smaller
components that can be packed into smaller spaces.

A quarter wavelength resonator made with a coax is shown in Figure 21.2. It is easier to
make a short indicated at the left end with a perfect electric conductor (PEC), but it is hard
to make a true open circuit as shown at the right end. A true open circuit means that the
current has to be zero. But when a coax is terminated with an open, the electric current does
not end abruptly. The fringing field at the right end gives rise to stray capacitance through
which displacement current can flow in accordance to the generalized Ampere’s law. Hence,
we have to model the right end termination with a small stray or fringing field capacitance
as shown in Figure 21.2. This indicates that the current does not abruptly go to zero at
the right-hand side due to the presence of fringing field and hence, displacement current. To
design a true open circuit, one needs to short the right end of the transmission line with a
perfect magnetic conductor (PMC). By going through Gedanken experiment, one can show
that the current at the right termination has to be zero.

Figure 21.2: A short and open circuited transmission line can be a resonator, but the
open end has to be modeled with a fringing field capacitance Cf since there is no exact
open circuit. The resonance condition will have to be derived from (21.1.1), which will
give a transcendental equation.
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21.2 Cylindrical Waveguide Resonators

Since a cylindrical waveguide1 is homomorphic to a transmission line, we can model a mode
in this waveguide as a transmission line. Then the termination of the waveguide with either
a short or an open circuit at its end makes it into a resonator.

Again, there is no true open circuit in an open ended waveguide, as there will be fringing
fields at its open ends. If the aperture is large enough, the open end of the waveguide radiates
and may be used as an antenna as shown in Figure 21.3.

Figure 21.3: A rectangular waveguide terminated with a short at one end, and an open
circuit at the other end. The open end can also act as an antenna as it also radiates.
When the cavity is injected with electromagnetic fields coinciding with its resonance
frequency, the fields inside the cavity becomes large, so does the fields at the aperture,
making it a better radiator. This is a cavity-backed antenna: it uses resonance tunneling
to enhance it radiation capability (courtesy of RFcurrent.com).

As previously shown, single-section waveguide resonators can be modeled with a transmis-
sion line using homomorphism with the appropriately chosen βz. Then, βz =

√
β2 − β2

s where
βs can be found by first solving a 2D waveguide problem corresponding to the reduced-wave
equation.

For a rectangular waveguide, for example, from previous lecture,

βz =

√
β2 −

(mπ
a

)2

−
(nπ
b

)2

(21.2.1)

for both TEmn and TMmn modes.2 If the waveguide is terminated with two shorts (which is

1Both rectangular and circular waveguides are cylindrical waveguides.
2It is noted that for a certain mn mode, with a choice of frequency, βz = 0 which does not happen in a

transmission line.
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easy to make) at its ends, then the resonance condition is that

βz = pπ/d, p integer (21.2.2)

Together, using (21.2.1), we have the condition that

β2 =
ω2

c2
=
(mπ
a

)2

+
(nπ
b

)2

+
(pπ
d

)2

(21.2.3)

The above can only be satisfied by certain select frequencies, and these frequencies are the
resonant frequencies of the rectangular cavity. The corresponding mode is called the TEmnp
mode or the TMmnp mode depending on if these modes are TE to z or TM to z. One can think
of these modes as a consequence of the TEmn or TMmn modes in the rectangular waveguide
bouncing back and forth in the z direction.

The entire electromagnetic fields of the cavity can be found from the pilot scalar potentials
previously defined, namely that

E = ∇× ẑΨh, H = ∇×E/(−jω) (21.2.4)

H = ∇× ẑΨe, E = ∇×H/(jωε) (21.2.5)

Figure 21.4: A waveguide filled with layered dielectrics can also become a resonator.
The transverse resonance condition can be used to find the resonant modes. This can be
obtained by exploiting the mathematical homomorphism between the waveguide problem
and the transmission line problem.

Since the layered medium problem in a waveguide is the same as the layered medium
problem in open space, we can use the generalized transverse resonance condition to find the
resonant modes of a waveguide cavity loaded with layered medium as shown in Figure 21.4.
This condition is repeated below as:

R̃−R̃+e
−2jβzd = 1 (21.2.6)

where d is the length of the waveguide section where the above is applied, and R̃− and R̃+

are the generalized reflection coefficients to the left and right of the center waveguide section.
The above is similar to the resonant condition using the transmission line model in (21.1.1),
except that now, we have replaced the transmission line reflection coefficient with TE or TM
generalized reflection coefficients.
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21.2.1 βz = 0 Case for Cylindrical Waveguides

In this case, we can still look at the TE and the TM modes in the waveguide. This corresponds
to a waveguide mode that bounces off the waveguide wall, but make no progress in the z
direction. This mode is independent of z since βz = 0. It is quite easy to show that for the
TE case, a z-independent H = ẑH0, and E = Es exist inside the waveguide, and for the TM
case, a z-independent E = ẑE0, and H = Hs being the only components in the waveguide.

Consider now a single section waveguide. For the TE mode, if either one of the ends of
the waveguide is terminated with a PEC wall, then n̂ · H = 0 at the end. This will force
the z-independent H field to be zero in the entire waveguide. Thus for the TE mode, it can
only exist if both ends are terminated with open, but this mode is not trapped inside since it
easily leaks energy to the outside via the ends of the waveguide.

For the TM mode, since E = ẑE0, it easily satisfy the boundary condition if both ends are
terminated with PEC walls since the boundary condition is that n̂ × E = 0. The wonderful
part about this mode is that the length or d of the cavity can be as short as possible, but
long enough to trap the energy of the mode.

21.2.2 Lowest Mode of a Rectangular Cavity

The lowest TM mode in a rectanglar waveguide is the TM11 mode. At the cutoff of this
mode, the βz = 0 or p = 0, implying no variation of the field in the z direction. When the
two ends are terminated with metallic shorts, the tangential magnetic field is not shorted out.
But the tangential electric field is shorted to zero in the entire cavity, or that the TE mode
with p = 0 cannot exist. However, the longitudinal electric field of the TM mode still exists
(see Figures 21.5 and 21.6). As such, for the TM mode, m = 1, n = 1 and p = 0 is possible
giving a non-zero field in the cavity. This is the TM110 mode of the resonant cavity, which is
the lowest mode in the cavity when a > b > d. To find the lowest resonant mode, we would
like to make the right-hand side of (21.2.3) as small as possible by setting p = 0.

The top and side views of the fields of this mode is shown in Figures 21.5 and 21.6. The
corresponding resonant frequency of this mode satisfies the equation

ω2
110

c2
=
(π
a

)2

+
(π
b

)2

(21.2.7)
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Figure 21.5: The top view of the E and H fields of the TM110 mode of a rectangular
resonant cavity.

Figure 21.6: The side view of the E and H fields of the TM110 mode of a rectangular
resonant cavity (courtesy of J.A. Kong [33]).

For the TE modes, it is required that p 6= 0, otherwise, the field is zero in the cavity. For
example, it is possible to have the TE101 mode with nonzero E field. The resonant frequency
of this mode is

ω2
101

c2
=
(π
a

)2

+
(π
d

)2

(21.2.8)

Clearly, this mode has a higher resonant frequency compared to the TM110 mode if d < b.

The above analysis can be applied to circular and other cylindrical waveguides with βs
determined differently. For instance, for a circular waveguide, βs is determined differently
using Bessel functions, and for a general arbitrarily shaped waveguide, βs may have to be
determined numerically.
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Figure 21.7: A circular resonant cavity made by terminating a circular waveguide (cour-
tesy of Kong [33]).

For a spherical cavity, one would have to analyze the problem in spherical coordinates.
The equations will have to be solved by the separation of variables using spherical harmonics.
Details are given on p. 468 of Kong [33]. These days, when the cavity is of arbitrary shape,
numerical methods can be used to find its resonant frequencies.

21.3 Some Applications of Resonators

Resonators in microwaves and optics can be used for designing filters, energy trapping devices,
and antennas. As filters, they are used like LC resonators in circuit theory. A concatenation
of them can be used to narrow or broaden the bandwidth of a filter. As an energy trapping
device, a resonator can build up a strong field inside the cavity if it is excited with energy
close to its resonance frequency similar to an LC tank circuit. They can be used in klystrons
and magnetrons as microwave sources, a laser cavity for optical sources, or as a wavemeter to
measure the frequency of the electromagnetic field at microwave frequencies. An antenna is
a radiator that we will discuss more fully later. The use of a resonator can help in resonance
tunneling esonance tunneling to enhance the radiation efficiency of an antenna.

21.3.1 Filters

An LC tank circuit can be used as a simple filter in electronic circuits. A concatenation of
a number of LC tank circuits can be used to design a broadband filter. By the same token,
microstrip line resonators, and a concatenation of them, are often used to make filters [136].
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Transmission lines are often used to model microstrip lines in a microwave integrated circuits
(MIC)or monolithic MIC (MMIC). In these circuits, due to the etching process, it is a lot
easier to make an open circuit rather than a short circuit. But a true open circuit is hard
to make as an open ended microstrip line has fringing field at its end as shown in Figure
21.8 [137, 138]. The fringing field gives rise to fringing field capacitance as shown in Figure
21.2. Then the appropriate ΓS and ΓL can be used to model the effect of fringing field
capacitance. Figure 21.9 shows a concatenation of several microstrip resonators to make a
microstrip filter. This is like using a concatenation of LC tank circuits to design filters in
circuit theory.

Optical filters can be made with optical etalon as in a Fabry-Perot resonator, or concate-
nation of them. This is shown in Figure 21.10.

Figure 21.8: End effects and junction effects in a microwave integrated circuit [137,138]
(courtesy of Microwave Journal).

Figure 21.9: A microstrip filter designed using concatenated resonators. The connec-
tors to the coax cable are the SMA (sub-miniature type A) connectors (courtesy of
aginas.fe.up.pt).
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Figure 21.10: Design of a Fabry-Perot resonator [57, 85, 139, 140]. As the magnitude of
the reflection coefficient becomes close to one, the wave is better trapped inside the slab.
A resonant mode exists inside the slab, providing a means for resonance tunneling.

21.3.2 Electromagnetic Sources

Microwave sources are often made by transferring kinetic energy from an electron beam
to microwave energy. Klystrons, magnetrons, and traveling wave tubes are such devices.
However, the cavity resonator in a klystron enhances the interaction of the electrons with the
microwave field allowing for such energy transfer, causing the field to grow in amplitude as
shown in Figure 21.11.

Magnetron cavity works also by transferring the kinetic energy of the electron into the
microwave energy. By injecting hot electrons into the magnetron cavity, the electromagnetic
cavity resonance is magnified by the absorption of kinetic energy from the hot electrons,
giving rise to microwave energy.

Figure 21.13 shows laser cavity resonator used to enhance of light wave interaction with
material media. By using stimulated emission of electronic transition, light energy can be
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produced.

Figure 21.11: A klystron works by converting the kinetic energy of an electron beam
into the energy of a traveling microwave next to the beam. As the microwave rides on
the electron beam, it absorbs energy from the kinetic energy of the electrons making its
amplitude grow as it propagates. The thus amplified microwave can be collected by the
“catcher” cavity (courtesy of Wiki [141]).

Figure 21.12: A magnetron works by having a high-Q microwave cavity resonator. When
the cavity is injected with energetic electrons from the cathode to the anode, the kinetic
energy of the electron feeds into the energy of the microwave. The cavity resonance
amplifies this field-electron interaction causes energy transfer from the kinetic energy of
the electrons to the electromagnetic field energy (courtesy of Wiki [142]).
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Figure 21.13: A simple view of the physical principle behind the working of the laser.
The cavity again enhances the interaction of the photons with the amplifying medium
(courtesy of www.optique-ingenieur.org).

Energy trapping of a waveguide or a resonator can be used to enhance the efficiency of
a semiconductor laser as shown in Figure 21.14. The trapping of the light energy by the
heterojunctions as well as the index profile allows the light to interact more strongly with
the lasing medium or the active medium of the laser. This enables a semiconductor laser
to work at room temperature. In 2000, Z. I. Alferov and H. Kroemer, together with J.S.
Kilby, were awarded the Nobel Prize for information and communication technology. Alferov
and Kroemer for the invention of room-temperature semiconductor laser, and Kilby for the
invention of electronic integrated circuit (IC) or the chip.

Figure 21.14: A semiconductor laser at work. Room temperature lasing is possible due
to both the tight confinement of both light photons and electron-hole carriers (courtesy
of Photonics.com).
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21.3.3 Frequency Sensor

A cavity resonator can be used as a frequency sensor. It acts as an energy trap, because it
will siphon off energy from a microwave when the microwave frequency hits the resonance
frequency of the cavity resonator. This can be used to determine the frequency of the passing
wave. Wavemeters are shown in Figures 21.15 and 21.16. As seen in the picture, there is an
entry microwave port for injecting microwave into the cavity, and another exit port for the
microwave to leave the cavity sensor. The resonant frequency of the cavity can be continuous
tuned by changing the location of the plunger. The passing microwave, when it hits the
resonance frequency of the cavity, will create a large field inside it. The larger field will
dissipate more energy on the cavity metallic wall, and gives rise to less energy leaving the
cavity. This dip in energy transmission at the resonant freqeuncy of the cavity reveals the
frequency of the microwave.

Figure 21.15: An absorption wave meter can be used to measure the frequency of mi-
crowave. If the microwave energy enters the cavity at its resonant frequency, strong field
buildup inside the cavity causes increased loss and absorption of the microwave energy
by the cavity. A dip in energy level of the transmitted signal indicated the coincidence of
the resonant frequency of the microwave with the frequency of the microwave (courtesy
of Wiki [143]).
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Figure 21.16: The innards of a wavemeter. The location of the plunger short can be con-
tinuously moved by rotating the cap of the cavity shown in the previous figure (courtesy
of eeeguide.com).


